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A presentation of cnoidal wave theory for
practical application

By R. L. WIEGEL
Department of Engineering, University of California, Berkeley

(Received 2 May 1959)

Cnoidal wave theory is appropriate to periodic waves progressing in water whose
depth is less than about one-tenth the wavelength. The leading results of existing
theories are modified and given in a more practical form, and the graphs necessary
to their use by engineers are presented. As well as results for the wave celerity and
shape, expressions and graphs for the water particle velocity and local accelera-
tion fields are given. A few comparisons between theory and laboratory measure-
ments are included.

1. Introduction

Mathematical arguments show that the theory of surface waves, commonly
known as Stokes’s waves, is most useful (i.e. valid without unreasonable restric-
tion as to the wave amplitude) when the depth to wavelength ratio d/L is greater
than about 1/8 or 1/10 (Keulegan 1950; De 1955). For shallower water the theory
for a wave type known as cnoidal appears to be more satisfactory. The formula
for the wave profile involves the Jacobian elliptic function cn u; hence the term
‘cnoidal’, analogous to ‘sinusoidal’. Keulegan has pointed out that the validity
of this theory rests on the assumption that the square of the inclination of the
water surface is small in comparison with unity. (On the other hand, for Stokes’s
waves to be valid in shallow water, the wave amplitude is required to be exces-
sively small, thus making the theory unrealistic.) The theory of cnoidal waves has
not been developed in the literature to the state where it can be used extensively
by engineers; and the object of the present paper is to fill this need.

Korteweg & de Vries (1895) initiated the theory of cnoidal waves. They showed
that it accounts for a general class of long waves of permanent type and finite
amplitude; one limiting case of the theory gives the solitary wave, while another
limiting case gives sinusoidal waves as accounted for by linearized wave theory.
Keulegan & Patterson (1940) have studied the cnoidal wave on somewhat
different lines. Again, Keller (1948) treated the problem using the general non-
linear shallow-water theory and obtained formulae which are similar to those of
Korteweg & de Vries. Littman (1957) has proved the existence of permanent
periodic waves of the type in question. The approximate region of validity of the
existence proof of cnoidal waves by Littman is shown in figure 1. Benjamin &
Lighthill (1954) have advanced the theory considerably with regard to the
formation of bores and hydraulic jumps, and Iwasa (1955) has also considered it.
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A comparison between the various alternative developments of the theory will not
be attempted here; rather, we select those results which appear to be most useful
and proceed from them to derive data for practical application.
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Ficure 1. Approximate regions of validity of existence proofs by Struik for Stokes’s
waves and by Littman for cnoidal waves (after Littman 1957).

2. Presentation of the theory

Kortweg & de Vries, Keulegan & Patterson, and Keller use different symbols;
however, the critical formulae obtained by them are essentially the same. The
wavelength is given by

L_ 2k (2E+1—@)—% (1)
d 43 0
where d is the still water depth, K (k) is the complete elliptic integral of the first
kind with modulus % (it should be noted that K(k) is sometimes denoted by
F,(k)). ¥, is the vertical distance from the ocean bottom to the wave trough and
L and k are defined by the following two equations:

= (¥e/d) — (/)
2L +1—(y,/d)’

(2E+1_%) E(k) = (2E+2-%@~%) K(k), (3)

(2)

where y, is the distance from the ocean bottom to the wave crest and E(k) is the
complete elliptic integral of the second kind with modulus k. The following
inequalities must also hold:

2E+1>%>%‘ and 0<k®<l. 4)

In using tables of elliptic integrals and functions, the reader is warned that they
are often tabulated as functions of the parameter m, where m = k2. Equation (2)

can be written (2E+ ) *%) _ (yc/d)l;(yt/d) _ {{Ig (5)

Substituting this into equation (1) and squaring gives
L:H

= WlkK &) (6)
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Ficure 2. Curves obtained from equations (6), (10) and (11b), showing relationships
between L2H/d® and k2, K(k), and y,/H —d/H = y,/H —d/H + 1.
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Both Keller (1948) and Littman (1957) also obtain this relationship as their basic
approximate solution. L2H/d? is plotted as a function of k2 in figures 2 and 3. If
the wavelength, wave height and water depth are known, then the many formulae
of the cnoidal wave theory can be used as they are expressed in terms of various
functions of the square of the modulus k. The terminology of the elliptic functions
and integrals as used herein are as used by Milne-Thompson (1950).

The wavelength is led\
L= (3H) kK (k). (7)

Equation 3 can be rearranged to give

_ (1 =[y/dD
E(k)— K (k) o Ay K(k). 8)

Substituting (1) into the above equation gives

Yo _ 200 (k) LK) — BRYT} + 1 )
or, multiplying by d/H, we get
3
%_% - ;T“fﬁ{K(k) [K(k)— B(E)]}. (10)

Next, y, can be obtained from the relationship

bt H_ 100 k-1 -2, (11a)

Y i _ 16d3
a0 Ry 7 |

These equations have been plotted in figures 2 and 3. The relationships among k2,
K(k) and E(k) have been tabulated over the range k? = 1-10-% by Kaplan (1946,
1948) and partially by Hayashi (1930, 1933) and Airey (1935). In order to extend
these functions to the range needed for the study of waves (k% = 1-10-%9) the
following equations were used (Jahnke & Emde 1945):

or {K (k) [K (k) — E(R)]}. (118)

E(k) = A+ HA- DI+ HA- ) K4+ A -3k, (120)
Ek)=1+HA-DE2+EA -1 4+ L5A -8k + ..., (12b)

where &’ = ,/(1 —k?) and A is the natural logarithm of 4/k'.
The wave profile is

Y, _y,+ch2[2K(k) (L ;,) k] (13)

where on is the Jacobian elliptic function associated with cosine. The function cn
is gingly periodic provided k is real number and 0 < k < 1. The period becomes
infinite when k = 1 (in which case we have the solitary wave). While the period of
the cn function is 4K (k), the period of the cn? function is 2K (k). The expression
cn?[2K (k) (x/L —t/T), k] is plotted in figures 4 and 5 as a function of z/L, {/T,
with k2 as parameter. Values of the cn function are available over a limited range
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of k2 (Milne-Thompson 1950; Spenceley & Spenceley 1947; Schuler & Gabelein
1955). Values for 0-95 < k% < 1 were calculated to three decimal places using the
following series (Milne-Thompson 1950):

en (% | k%) = sech % — 1k’2 tanh % sech %(sinh % cosh % —u), (14)
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Ficure 5. Surface profiles of cnoidal waves, obtained from equation (13).

where % is the incomplete elliptic integral of the first kind. z/L is the same as
/2K (k) for the cn? function. # has been used rather than the more commonly
accepted symbol « to avoid confusion with the horizontal component of water-
particle velocity. In figure 6 the theoretical surface profile is compared with some
measurements made by Taylor (1955). It can be seen that the cnoidal theory
predicts the wave profile very well.

It is interesting to note that when the modulus £ is zero,

en(@|k) =cn(u|0) =cosw and K(k)= }m;
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hence 4K (k) = 2m, and the wave profile is given by the trignometric functions.
When k=1, en(u|1) =sech# and we have the hyperbolic function with
K(k) = oo; hence the period becomes infinite and we then have the solitary wave.
It can be seen that when k is reduced from 1 to 0-9999 the period 4K is reduced
from infinity to about 77, whereas the further reduction of k to 0 reduces 4K to
only 2.

14
REEEEERE HEEEE
Solnary wave: T /—Cnoidal wave:
] sech’[( ﬂ) ’ ] / Hld = 0419  Lid =1640]| |
08— H/d = 0479 Lid=w / / ‘Y’ Syinu;oidal wave: ]
L —=HQ- =} coszllf&, 5‘=16-40
T 04 4 \
= | 7 AN
e dARECS
= 0 %_vgater level o . R 4—
=~ ° T‘ / \ ol _al o
P O O] \\
-04 L - ~
I o Experimental wave Pt
(from Taylor 1955)
-08|— Hid = 0479, Lid =1640
= % -a =2 0 2 3 6 8 10

z/d
Ficure 6. Comparison between measured and theoretical wave profiles.
The wave velocity (using Stokes’s second definition of wave velocity, which is

the velocity of the propagation of the wave-form when the horizontal momentum
of the liquid has been reduced to zero by the addition of a uniform motion) is

-4 -5
or, as 3L2dHK2(k) =R
C= (gd)‘}[l +—1ff I{Z(Ic)(1 KEZ;)] (15b)

Equation (15a) has been plotted in figure 7.
For one limiting case (the solitary wave), k% approaches unity, (k) is unity and
K(k) is infinity; hence

H
= (g (1+3)- (150)
This approximation to I
- {9‘1(1*3)} aed

is higher by a maximum of only 2 9%, even for the case of the solitary wave of
maximum steepness (H/d = 0-78).
For the other limiting case (the linear theory, where k2 —> 0), E(k)/ K (k) -> unity

and
2 zdz
- e} (1-%77). (15¢)
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which is an approximation to

4m2d?\\t
Now, the linear theory gives (LLamb 1945, p. 366)
(e g 27
¢ = {277'5 h= } (159)

.‘
Il
i

| BERTE B NG
1 U‘l—l.Hd-l‘l It

L
AT
-

09

08

n‘? I 1 i ! 111
10 100 1000 10,000

LAH|d®

Figure 7. Curves obtained from equation (15a), showing relationship between the
cnoidal wave velocity (Korteweg & de Vries) and L2H [d®.

But the first two terms in the expansion of tanh (2nd/L) are

ond 8mid3
LT 33
272\ \§
So C= {gd(l—%)} . (15h)

which is in agreement with equation (15 f).

The equation for wave celerity as given by Keulegan & Patterson (1940), and
Littman (1957), which is the velocity of the wave crest with respect to fixed
co-ordinates, can be written

02=gd{1+§[—1+7§—2(2—3§—f(—2)”. (16)

This equation has been plotted in figure 8 as a function of L2H [d3, and in figure 9
as a function of 7T'(g/d)}.
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Figure 8. Curves obtained from equation (16), showing relationship between the
cnoidal wave velocity (Keulegan & Patterson) and L2H [d3.
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340 T T : 1 —
8 I@ﬁ! e f.' I,If_-:
Y it a1
Sl Y
At

T(g/d)

ot e, 1oy

LH |d?

1000

281

Fieure 11. Relationships among T'(g/d)}, L*H/d® and H/d (Korteweg & de Vries).



282 R. L. Wiegel

In figure 10 are shown comparisons between the wave velocity as obtained
from equation (16) and some measurements of waves in the laboratory.
As cnoidal waves are periodic and of permanent form,
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Ficurr 12. Relationships among T'(g/d)}, L*H/d® and H/d (Keulegan & Patterson).

and the wave period is given by

g\b _ (16d\} kK (k) |
T(d) (3H) [1_(_3}751‘2(%_%)))} (17)

using the velocity as given in equation (15a).
From this equation k2 can be determined as a function of T(g/d)} and H/d, and
from this L2H /d® can be determined. This has been done and plotted in figure 11.
Using the velocity as given in equation (16) results in

(%)2(%%1)*{ I;[ lilzz;_ﬂk_))]}%’ (18)

i 02
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which has been plotted in figure 3 as a function of ¥ and Hd, and in figures 12 and
13 as a function of L2H/[d3 and H|d. The results in figure 13 show that a wave of
a given period and height, and for a given water depth, can have two possible
lengths. The physical significance of this is not apparent.

The pressure at any distance y above the bottom has been shown by Keller
(1948) to be, to the second approximation,

= pg(¥s—Y), (19)

where p is density and y, is given by (13). It is rather surprising that this simple
hydrostatic expression applies.

The horizontal and vertical components of water-particle velocities at any
point z, y within the fluid can be obtained from the following equations given
by Keulegan & Patterson (1940):

_“__[@_ELF(d y)azh]
gdt & 4@ " \3”2d) &)’
v 1hah1dy)aah]
@i‘"y[(ﬁ—zdz)az 3( 2d
t

h=y,—d = —d+y+Hon? [2K(Ic) (I_T) k]

These equations become

H yH
u _[ 5.3 y'+(?é_d‘%ﬁ) ont( ) pont( )

W;“ 2d  4d?

- (5-55) (—reent Cont( ) vont(dn()—snt(yant( )], @0
v 2HK (k) H 32K?(k) .
i YT Ia [l+d O+ 30 ( )(kzn()

—kron?( )—dn?( »]sn( yen( )dn( ), (21)

where sn () refers to sn[2K (k) (x/L —t/T), k], etc. The local accelerations are

% qap EERT(E ) B o) 2O (2

2 2d
x (k*sn?( )—kPon?( )—dn( ))]sn( yen( )dn( ), (22)

JAHEK (k)

(d) “ILTd {[1"'%][5112( )dn?( )—en?( )dn2( )+k2%sn?( )en2( )]

3 [36n2( )dnt( )~ on2( )dn?( )+ Ktant ()] en( >—&£§—“[ 2‘%1
x [9%2sn?( )en?( )dn®( )—k%sn¢( ) (k%2en2( )+dn2( )

+k%ent( ) (k2sn?( )+dn2( ))+dn?(sn?( )—cn?( ))]}. (23)
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In order to use the equations for water-particle velocities the necessary
numbers can be obtained from figures 2, 3, 4 and 5, as

|k = 2K(k)z/L, (24)
sn? (% | k) = 1—cn?(u | k), (25)
dn? (% | k) = 1 —k2[1—cn? (u | k)]. (26)

A few comparisons of theory with laboratory measurements are shown in
figure 14. In considering the vertical velocity it should be noted that the curve

YT
a_ -050 -025 0 025 050
§ 40 20
= P it ™t i M g
20 A > +— 10 2
'g’ ., Le=—1" ’ ,/// \‘\\\ s S .. 5'
g o e e - _sarae il =
'4'3 PR EEER R 5] /- Ne, \;‘ d g
a8 === N ) P ‘S
& =20 - e u it 4 20 8
3 N e G
8 4 - a| S
&% 05 10 15 70 25 z 10
< 30
t (sec)
RN NP RN RS ARE
& ] P = . P
03 ———g B 54 os—g,n—a\-_g_ £ . i 03 _WT!/ L
V4 =at 2 fe / _IE Ty | I,' Trough|— ° /
- \ . K . /
& o2 HE // f 02 . ; o2t/ r
= \ . r ! i/ / -~
L 1 - e
® 01— { 01 - S| e d
3 » 1 - ” -
0 ! ! b 0 ¢ o~ d
0 02 04 06 08 10 12 0Z 04 06 08 10 12 O

02 04 06 08
v (ft.[sec) |w] (ft./sec) lv] (ft.[sec)

F1cUuRE 14. Comparisons of horizontal components of water-particle velocity and accelera-
tion with cnoidal wave theory. a: o, Experimental points (Elliott 1953); - - - - - » Stokes’s
second-order theory; ——, Cnoidal theory. b to d: e,0, Experimental points (Morison &
Crooke 1953); , Linear theory; - - - - - , Stokes’s second-order theory; , Cnoidal
theory. In b and ¢, points e, o give |u| under wave troughs and crests respectively; in d,
points e, o give |v| under SWL leading wave crests and following wave crests respectively.

H (ft.) T (sec.) d (ft.) L (ft.)

a 0483 3-20 2:0 24-7

b 0105 1-62 0-292 5-10
¢ 0120 1-27 0-292 371
d 0137 2-09 0-292 6-58

plotted for the cnoidal theory is for the phase of maximum vertical velocity and
this occurs prior to the time the wave profile goes through the still water level.

The work presented in this paper was done under Grant G-4630 from the
National Science Foundation. The author wishes to express his appreciation to

Mrs M. M. Turner for her help in the computations and preparation of the
illustrations.
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