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A presentation of cnoidal wave theory for 
practical application 

By R. L. WIEGEL 
Department of Engineering, University of California, Berkeley 

(Received 2 M8y 1959) 

Cnoidal wave theory is appropriate to periodic waves progressing in water whose 
depth is less than about one-tenth the wavelength. The leading results of existing 
theories are modified and given in a more practical form, and the graphs necessary 
to their use by engineers are presented. As well aa results for the wave celerity and 
shape, expressions and graphs for the water particle velocity and local accelera- 
tion fields are given. A few comparisons between theory and laboratory measure- 
ments are included. 

1. Introduction 
Mathematical rtrguments show that the theory of surface waves, commonly 

known 88 Stokes’s waves, is most useful (i.e. valid without unreasonable restric- 
tion aa to the wave amplitude) when the depth to wavelength ratio d / L  is greater 
than about 1/8 or 1/10 (Keulegan 1950; De 1955). For shallower water the theory 
for a wave type known as cnoidal appears to be more satisfactory. The formula 
for the wave profile involves the Jacobian elliptic function cn u; hence the term 
‘cnoidal’, analogous to ‘sinusoidal’. Keulegan has pointed out that the validity 
of this theory rests on the atsumption that the square of the inclination of the 
water surface is small in comparison with unity. (On the other hand, for Stokes’s 
waves to be valid in shallow water, the wave amplitude is required to be exces- 
sively small, thus making the theory unrealistic.) The theory of cnoidal waves bas 
not been developed in the literature to the state where it can be used extensively 
by engineers; and the object of the present paper is to fill this need. 

Korteweg & de Vries (1895) initiated the theory of cnoidal waves. They showed 
that it accounts for a general class of long waves of permanent type and finite 
amplitude; one limiting caae of the theory gives the solitary wave, while another 
limiting case gives sinusoidal waves as accounted for by linearized wave theory. 
Keulegan & Patterson (1940) have studied the cnoidal wave on somewhat 
different lines. Again, Keller (1948) treated the problem using the general non- 
linear shallow-water theory and obtained formulae which are similar to those of 
Korteweg & de Vries. Littman ( f 957) has proved the existence of permanent 
periodic waves of the type in question. The approximate region of validity of the 
existence proof of cnoidal waves by Littman is shown in figure 1. Benjamin & 
Lighthill (1954) have advanced the theory considerably with regard to the 
formation of bores and hydraulic jumps, and Iwasa (1955) haa also considered it. 
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A comparison between the various alternative developments of the theory will not 
be attempted here; rather, we select those results which appear to be most useful 
and proceed from them to derive data for practical application. 
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FIGURE 1. Approximate regions of validity of existence proofs by Struik for Stokes's 
waves and by Littman for cnoidal waves (after Littman 1957). 

2. Presentation of the theory 
Kortweg & de Vries, Keulegan & Patterson, and Keller use different symbols; 

however, the critical formulae obtained by them are essentially the same. The 
wavelength is given by 

5 = A K ( k )  (2Z+ 1 --!)-*, 
a 4 3  

where d is the still water depth, K ( k )  is the complete elliptic integral of the first 
kind with modulus k (it should be noted that K ( k )  is sometimes denoted by 
&(k)) .  yt is the vertical distance from the ocean bottom to the wave trough and 

and k are defined by the following two equations: 

(2L + 1 - !) E(k)  = (2z + 2 - 13) 

where yc is the distance from the ocean bottom to the wave crest and E ( k )  is the 
complete elliptic integral of the second kind with modulus k. The following 
inequalities must also hold: 

2 E + l > % > g  d d  and O < k 2 < 1 .  (4) 

In using tables of elliptic integrals and functions, the reader is warned that they 
are often tabulated as functions of the parameter m, where m = k2. Equation ( 2 )  

Substituting this into equation (1)  and squaring gives 

-- - JG[kK(k) l2 .  L2H 
a3 
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FIGURE 2. Curves obtained from equations (6), (10) and ( l l b ) ,  showing relationships 
between LZH/dS and La, K(k) ,  and y J H  -d/H = yt /H -d/H + 1. 

FIQURE 3. Curves showing relationships k2 'us L2H/d3, and ka vs T ( g / d ) )  and Hld. 
18-2 
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Both Keller (1948) and Littman (1957) also obtain this relationship as their basic 
approximate solution. L2H/d3 is plotted aa a frhction of k2 in figures 2 and 3. If 
the wavelength, wave height and water depth are known, then the many formulae 
of the cnoidal wave theory can be used as they are expressed in terms of various 
functions of the square of the modulus k. The terminology of the elliptic functions 
and integrals aa used herein are as used by Milne-Thompson (1950). 

(7 )  
16d3 4 The wavelength is 

L =  (=) kK(k) .  

Equation 3 can be rearranged to give 

Substituting (1)  into the above equation gives 

5 = ---(K(k)[K(k)-E(k)])+ 16d2 1; 
d 3L2 

or, multiplying by d/H, we get 

Next, yt can be obtained from the relationship 

or 

These equations have been plotted in figures 2 and 3. The relationships among k2, 

K ( k )  and E(k) have been tabulated over the range k2 = 1-104 by Kaplan (1946, 
1948) and partially by Hayaahi (1930,1933) and Airey (1935). In order to extend 
these functions to the range needed for the study of waves (k2 = 1-10-40) the 
following equations were used (Jahnke & Emde 1945) : 

(124 

(W 
R ( k )  = A+ *(A - 1) 

E(k) = 1 + +(A- 4) k" +&(A-G) kf4 + +&(A-t) k'' + . . ., 
+&(A -&) F4+&(A -%) k"+ .. ., 

where k' = J(1- ks) and A is the natural logarithm of 4/k'. 
The wave profile is 

where on is the Jacobian elliptic function associated with cosine. The function cn 
is singly periodic provided k is real number and 0 < k < 1. The period becomes 
infinite when k = 1 (in which caae we have the solitary wave). While the period of 
the cn function is 4K(k), the period of the cn2 function is 2 K ( k ) .  The expression 
cn2 [ 2 K ( k )  (x/L - t /T) ,  k] is plotted in figurea 4 and 5 as a function of x/L, t /T,  
with ks aa parameter. Values of the cn function are available over a limited range 
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of k2 (Milne-Thompson 1950; Spenceley & Spenceley 1947; Schuler & Gabelein 
1955). Values for 0.95 < k2 < 1 were calculated to three decimal places using the 
following series (Milne-Thompson 1950) : 

cn (ii I k2)  = sech ii - tanh ii sech ii(sinh ii cosh ii - ii), (14)' 

X I L  

FIGURE 4. Surface profiles of cnoidal waves, obtained from equation (13). 

X l L  
FIGURE 5. Surface profiles of cnoidal waves, obtained from equation (13). 

where ii is the incomplete elliptic integral of the first kind. x/L is the same as 
u/2K(k) for the on2 function. ii has been used rather than the more commonly 
accepted symbol u to avoid confusion with the horizontal component of water- 
particle velocity. In  figure 6 the theoretical surface profile is compared with some 
measurements made by Taylor (1955). It can be seen that the cnoidal theory 
predicts the wave profile very well. 

- 

It is interesting to note that when the modulus k is zero, 

cn( i i Ik)=cn(u[O)=cos i i  and K ( k ) = & n ;  
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hence 4K(k) = 2n,  and the wave profile is given by the trignometric functions. 
When k = 1, cn (;li I 1) = sech;li and we have the hyperbolic function with 
K(k)  = 00; hence the period becomes infinite and we then have the solitary wave. 
It can be seen that when k is reduced from 1 to 0.9999 the period 4K is reduced 
from infinity to about 7rr, whereas the further reduction of k to 0 reduces 4K to 
only 277. 
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FIUURE 6. Comparison between measured and theoretical wave profiles. 

The wave velocity (using Stokes’s second definition of wave velocity, which is 
the velocity of the propagation of the wave-form when the horizontal momentum 
of the liquid has been reduced to zero by the addition of a uniform motion) is 

Equation (15a) has been plotted in figure 7 .  
For one limiting case (the solitary wave), k2 approaches unity, ( k )  is unity and 

K(k)  is infinity; hence 
c = ( g a ) q l + g ) .  

This approximation to 

c = {ga(l+;))t ( 1 5 4  

is higher by a maximum of only 2 yo even for the case of the solitary wave of 
maximum steepness (H/d = 0.78) .  

For the other limiting case (the linear theory, where k2 -+ 0) ,  E(k)/K(k)  --f unity 
and 

c=  (gd)& ( 1-- 2;:)) 
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which is an approximation to 

Now, the linear theory gives (Lamb 1945, p. 366) 
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FIQURE 7. Curves obtained from equation (15a) ,  showing relationship between the 
cnoidal wave velocity (Korteweg & de Vries) and L2H/d3.  

But the first two terms in the expansion of tanh (2ndlL)  are 

2nd 87r2d3 
L 3L3 * 

s o  c =  { gd ( 1--- 4 g ) ) i  (15h) 

which is in agreement with equation (15 f ). 
The equation for wave celerity as given by Keulegan & Patterson (1940), and 

Littman (1957), which is the velocity of the wave crest with respect to fixed 
co-ordinates, can be written 

This equation has been plotted in figure 8 as a function of L2H/d3 ,  and in figure 9 
as a function of T(g/d)* .  



FIUURE 8. Curves obtained from equation (16),  showing relationship between the 
cnoidal wave velocity (Keulegan & Patterson) and L2H/d3.  

FIGURE 9. Cnoidal wave velocity (Keulegan & Patterson) as a function of T(g/d)).  
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- Theory 

lZ-4 
6o ---- Measured data 

FIGURE 10. Comparisons between theoretical and measured wave velocities. 

FIU- 11. Relationships among T(g/d)*,  L2H/dS and H/d (Korteweg & de Vries). 
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In  figure 10 are shown comparisons between the wave velocity as obtained 

As cnoidal waves are periodic and of permanent form, 
from equation (16) and some measurements of waves in the laboratory. 

L =  C T ,  T = L / C ;  

FIGURE 12. Relationships among T(g /d )* ,  LaH/d3 and H/d (Keulegan 8z Patterson). 

and the wave period is given by 

using the velocity as given in equation (15a). 
From this equation E2 can be determined as a function of T ( g / d ) t  and Hid, and 

from this L2H/d3 can be determined. This has been done and plotted in figure 11. 
Using the velocity as given in equation (16) results in 
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which has been plotted in figure 3 as a function of k2 and Hid,  and in figures 12 and 
13 &B a function of L2H/ds and H / d .  The results in figure 13 show that a wave of 
a given period and height, and for a given water depth, can have two possible 
lengths. The physical significance of this is not apparent. 

The pressure at any distance y above the bottom has been shown by Keller 
(1948) to be, to the second approximation, 

(19) 

where p is density and y8 is given by (13). It is rather surprising that this simple 
hydrostatic expression applies. 

The horizontal and vertical components of water-particle velocities at any 
point x, y within the fluid can be obtained from the following equations given 
by Keulegan & Patterson (1940): 

P = Pg(% - Y), 

h = ys-d = -d+yt+Hcn2 

These equations become 

-k2cn2( ) -@( ))]W )on( )dn( ), (21) 

where an ( ) refers to an [2K(k) (z /L - t/T), k ] ,  etc. The local accelerations are 

H 
+z[3sn2( )dn2( )-ena( )ha( )+k2sn2( )]en2( 

x[9k2sn2( )en2( )dna( )-k2sn4( )(kzcnZ( ) + d n 2 (  )) 

+k2cn4( )(Pan2( )+dn2( ))+dn4(sna( )-cn2( ))I (23) 
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In order to use the equations for water-particle velocities the necessary 

(24) 

sn2(iiIk) = l-cn2(iiIk), (25 )  

dn2@ I k )  E 1 -kS[l -cn2(ii I k)]. (26) 

numbers can be obtained from figures 2 ,  3,4 and 5 ,  as 

ii I k = 2 K ( k ) x / L ,  

A few comparisons of theory with laboratory measurements are shown in 
figure 14. In considering the vertical velocity it should be noted that the curve 

tlT 

FIGTJRE 14. Comparieons of horizontal componenta of water-particle velocity and mcelera- 
tion with cnoidal wave theory. a: 0, Experimental pointa (Elliott 1953); - - - - -, Stokes’s 
second-order theory; -, Cnoidel theory. b to d :  0,0, Experimental points (Morison & 
(hoke 1953); - , L i n ~  theory; - - - - -, Stokes’s second-order theory; -, Cnoidel 
theory. In b and c, poinh 0,  o give lul under wave troughs and cresta respectively; in d, 
points 0,  o give I w I under SWL leading wave crests and following wave crests respectively. 

EZ (ft.) T (sec.) a! (ft.) L (ft.) 
a 0.483 3-20 2.0 24-7 
b 0.105 1.62 0.292 5.10 
c 0-120 1-27 0.292 3.71 
d 0.13’7 2.09 0.292 6.58 

plotted for the cnoidal theory is for the phase of maximum vertical velocity and 
this occurs prior to the time the wave profile goes through the still water level. 

The work presented in this paper wm done under Grant 6-4630 from the 
National Science Foundation. The author wishes to express his appreciation to 
Mrs M. M. Turner for her help in the computations and preparation of the 
illustrations. 
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